Assignment 8

Hand in no 5, 6, and 7 in November 14.

- 1. Consider the problem of minimizing $f(x, y, z) = (x + 1)^2 + y^2 + z^2$ subjecting to the constraint $g(x, y, z) = z^2 x^2 y^2 1$, z > 0. First solve it by eliminating z and then by Lagrange multipliers.
- 2. Let f, g_1, \dots, g_m be C^1 -functions defined in some open U in \mathbb{R}^{n+m} . Suppose (x_0, y_0) is a local extremum of f in $\{(x, y) \in U : g_1(x, y) = \dots = g_m(x, y) = 0\}$. Assuming that $D_y G(x_0, y_0)$ is invertible where $G = (g_1, \dots, g_m)$, show that there are $\lambda_1, \dots, \lambda_m$ such that

$$\nabla f + \lambda_1 \nabla g + \dots + \lambda_m \nabla g_m = 0 ,$$

at (x_0, y_0) .

- 3. Let $f \in C(R)$ where R is a closed rectangle. Suppose x solves x' = f(t, x) for $t \in (a, b)$ with $(t, x(t)) \in R$. Show that x can be extended to be a solution in [a, b].
- 4. Let $f \in C(R)$ where R is a closed rectangle satisfy a Lipschitz condition in R. Suppose that x solves x' = f(t, x) for $t \in [a, b]$ where (b, x(b)) lies in the interior of R. Show that there is some $\delta > 0$ such that x can be extended as a solution in $[a, b + \delta]$.
- 5. Let $D = (a, b) \times \mathbb{R}$ and $f \in C(\overline{D})$ satisfy a Lipschitz condition. Let x be a maximal solution to the (IVP) $x' = f(t, x), x(t_0) = x_0, t_0 \in (a, b)$ over the maximal interval (α, β) . Show that if $\beta < b, x(t) \to \infty$ or $x(t) \to -\infty$ as $t \uparrow \beta$.
- 6. Let f and g be two continuous functions in \overline{D} both satisfying a Lipschitz condition and f < g everywhere. Let x and y be the respective solutions to the (IVP) of f and g satisfying $x(t_0) < y(t_0)$. Show that $x(t) < y(t), t \ge t_0$, as long as they exist.
- 7. Let $D = \mathbb{R}^2$ and $f \in C(\mathbb{R}^2)$ satisfy a Lipschitz condition. Suppose that $|f(t, x)| \leq C(1+|x|)$ everywhere. Show that all maximal solutions exists on $(-\infty, \infty)$. Hint: Use the previous two questions.
- 8. Provide a proof to Theorem 3.15 (Picard-Lindelof theorem for systems).